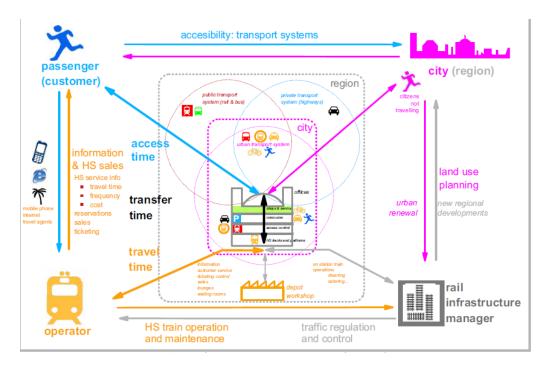


Iranian Railways (RAI)

Parallel Session 8 – Station Management & Financing

New Approach to Classification of Railway Stations

Melody Khadem Sameni¹, Somaye Nekoui ², Mehdi Gorjestani³


1,3-Iran University of Science and Technology, 2-Iranian Railways

1-Assistant Professor 2- Head of Group 3- Msc student

Brief overview of this research

- Why classification of stations
- Current approach
- Challenges of the current approach
- Proposed methodology to classify stations

Importance of stations

(UIC, 2010)

Why classification of stations?

• Stations vary in size, number of passengers that use them, number of platforms, etc. ...

- Better management of them
- Allocation of resources
- Standardization of procedures

Current Approach

5 criteria for categorizing railway stations:

- 1. Attendance (passengers per day)
- 2. Number of trains per day
- 3. Number of platforms
- 4. Station area (square meter)
- 5. Intermodality

Criterion no.1

Total number of passengers using a train per working day

- A< 400 persons K (A)=1
- 400 <= A< 7 500 K (A
- 7500 <= A< 20 000
- 20000 <=A < 200 000
- A > 200 000

K (A)=2 K (A)= 3 K (A)= 4 K (A) = 5

(UIC, 2015)

Final score

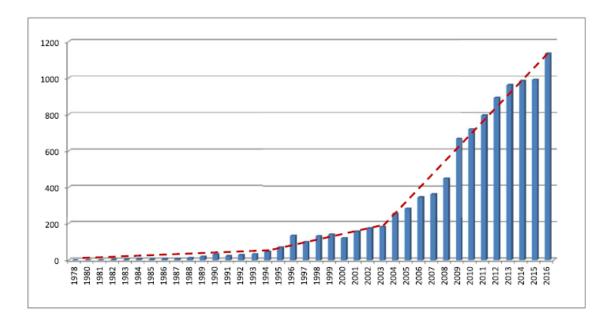
- Thresholds for each criterion
- Weights are given to each criterion
- sum of the values of all 5 criteria yields a total score of C
- Based on the value of C stations are classified into class A, B, C, D or E

Challenges of the current approach

One size does not fit all!!!

- Japan 9 billion railway passengers
- India 8 billion
- Germany 2 billion
- China 1.7 billion
- France 1.2 billion
-

Some railways transport less than 50 million passenger per year (such as Bulgaria, Sweden, Finland and Iran)


(UIC, 2019)

Index Number Problem

- "complex that is made up of individual measurements for which no common physical unit exists" (Frisch, 1936)
- Data envelopment analysis is a method that can measure relative efficiency

Number of papers published using DEA (Emrouznejad and Yang, 2018)

DEA Model

$$\max h_o = \frac{\sum_{r=1}^{s} u_r y_{ro}}{\sum_{i=1}^{m} v_i x_{io}}$$

$$\frac{\sum_{r=1}^{s} u_r y_{rj}}{\sum_{i=1}^{m} v_i x_{ij}} \le 1 \qquad j = 1, \dots, n$$

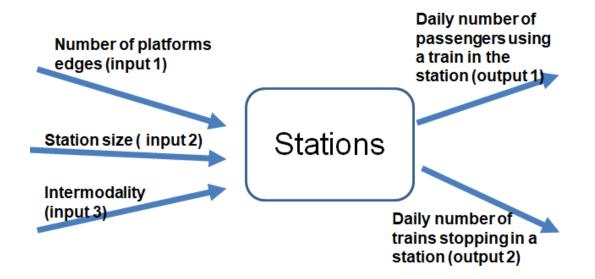
$$\sum_{i=1}^{m} v_i x_{ij}$$

$$u_r, v_i \ge \varepsilon \qquad r = 1, \dots, s \qquad i = 1, \dots, m$$

 h_{o} = efficiency of the unit under assessment

 u_r = weight given to output r y_{ro} = amount of output r for unit under assessment v_i = weight given to input i x_{io} = amount of input i for unit under assessment g_o = efficiency of the unit under assessment ω_i = weight given to input i in the linear model μ_r = weight given to output r in the linear model

(Charnes et al., 1978)


1

Some of DEA applications in railways

Study	Sample	Inputs	Outputs
(Oum and Yu, 1994)	19 railways in	Staff; energy	Passenger-km;
	Europe and	consumption;	freight-tonne-km
	Japan	rolling stock	
(Coelli and Perelman,	17 European	Staff; rolling stock;	Passenger-km;
1999,Coelli and	railways	track length	freight-tonne-km
Perelman, 2000)	1988-1993		
(Cantos et al., 2002)	17 European	Operating cost;	Passenger-km;
	railways	track-km	freight-tonne-km
	1970-1995		
(Growitsch and Wetzel,	54 railways in	Staff; rolling stock;	Train-km;
2009)	27 countries	track-km; operating	passenger-km;
	2000-2004	expenditure	freight-tonne-km
(Driessen et al., 2006)	14 European	Staff; track length;	Passenger-km;
	railways	rolling stock	freight-tonne-km
	1990-2001		
(Cantos et al., 2010)	16 European	Staff; rolling stock	Passenger-km;
	rail systems	(Passenger vs. freight);	freight-tonne-km
	1985-2004	network length	
(Merkert et al., 2010)	43 Swedish, German and	Material (Annual amount spent	Train-km
	British train operating	on operation including	
	firms	depreciation and rolling stock	
		lease costs but excluding all	
		staff costs); total staff	
		Material; managerial and	Train-km; passenger-km
		administrative staff; the	
		remaining production staff	
		Material; managerial	Train-km; Tonne-km
		and administrative staff; the	
		remaining production staff	

(Merkert et al., 2010) (Khadem Sameni and Kashi Mansouri, 2017)

Proposed DEA Model

Case Study: Major stations in Iran

 Decision Making Unit (DMU)

Abbreviation signs	Full name	
DMU 1	Tehran	
DMU 2	Mashhad	
DMU 3	Isfahan	
DMU 4	Tabriz	
DMU 5	Gorgan	
DMU 6	Sari	
DMU 7	Arak	
DMU 8	Qom	
DMU 9	Ahvaz	
DMU 10	Zahedan	
DMU 11	Andimeshk	
DMU 12	Tabas	
DMU 13	Shahrud	
DMU 14	Semnan	
DMU 15	Zanjan	
DMU 16	Shiraz	
DMU 17	Kerman	
DMU 18	Bandar Abbas	
DMU 19	Yazd	

Descriptive statistics of the data

Data was provided by Iranian Railways

	Platform	size	Intermodality	Passenger	Trains
Mean					
	3.947	1953.892	4.263	4491.058	24.368
Median	3	1,049	4	1,863	11
Standard Dev					
	3.597	2302.076	0.991	8410.166	40.111
Minimum	1	215	3	403	4
Maximum	14	10,331	7	30,699	169

Results

- Models were solved by output orientation
- Constant return to scale (CRS)
- Variable return to scale (VRS)

DMU	Basic model		
DIVIO	CRS model	VRS model	
Tehran	1	1	
Mashhad	1	1	
Isfahan	0.175	0.41	
Tabriz	0.464	0.667	
Gorgan	0.348	1	
Sari	0.513	0.528	
Arak	0.524	0.624	
Qom	1	1	
Ahvaz	0.696	1	
Zahedan	0.256	0.301	
Andimeshk	0.828	1	
Tabas	0.663	1	
Shahrud	0.56	0.676	
Semnan	0.434	0.497	
Zanjan	0.637	0.711	
Shiraz	0.212	0.243	
Kerman	0.629	0.774	
Bandar Abbas	0.344	0.492	
Yazd	0.653	0.747	

Conclusions

- Fixed thresholds of UIC 180 does not fit for all railways due to huge differences in the volume of their work
- Concept of efficiency of stations seems more promising than classification
- DEA seems to be a promising approach and yielded some good results in the early phases of this research

Some of the references

- International Union of Railways, High Speed and the City. 2010 (available online at <u>www.uic.org</u>)
- International Union of Railways, UIC Code 180 : Classification of Rail Passenger Stations, 2015
- Merkert, Rico, Andrew SJ Smith, and Chris A. Nash. "Benchmarking of train operating firms—a transaction cost efficiency analysis." Transportation Planning and Technology33, no. 1 (2010): 35-53
- FRISCH, R. 1936. Annual survey of general economic theory: The problem of index numbers. Econometrica: Journal of the Econometric Society, 1-38.

Some of the references

- International Union of Railways, Railway Statistics Synopsis, 2019. (available online at <u>https://uic.org/IMG/pdf/uic-statistics-</u> <u>synopsis-2019.pdf</u>)
- Emrouznejad, A. and Yang, G.L., 2018. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. *Socio-Economic Planning Sciences*, *61*, pp.4-8.
- Charnes, Abraham, William W. Cooper, and Edwardo Rhodes.
 "Measuring the efficiency of decision making units." European journal of operational research 2, no. 6 (1978): 429-444.
- Khadem Sameni M, Kashi Mansouri M R. Analyzing Efficiency of Railway Transportation by Considering Quality of Services: New Data Envelopment Analysis Models. IJRARE. 2017; 4 (1) :47-55

Some of the references

- Oum, Tae Hoon, and Chunyan Yu. "Economic efficiency of railways and implications for public policy: A comparative study of the OECD countries' railways." Journal of transport Economics and Policy (1994): 121-138.
- Coelli, Tim, and Sergio Perelman. "A comparison of parametric and non-parametric distance functions: With application to European railways." European journal of operational research 117, no. 2 (1999): 326-339.
- Coelli, Tim, and Sergio Perelman. "Technical efficiency of European railways: a distance function approach." Applied Economics 32, no. 15 (2000): 1967-1976.

Thank you for your kind attention

